Cold Neutron Research Facility and its Utilization at HANARO, 2003~2011

Chang-Hee Lee

(leech@kaeri.re.kr) On behalf of CNRF project team, Korea Atomic Energy Research Institute

IAEA Int'l Conf. on RRs: Safe Management & Effective Utilization , 14~18 November, 2011, Rabat, Morocco

Outline

- > RR History & HANARO, the neutron source
- Cold Neutron Research Facility Project
- > Korean Neutron Users & Int'l network

Outline

> RR History & HANARO, the neutron source

> Cold Neutron Research Facility Project

> Korean Neutron Users

RR history & Users program

Capability build-up

Users facility

CNRF project

- Thermal instruments
- Users facility
- Neutron scattering R&D

1995~2005

(2003~2010)

2010 ~ ...

- Rx constructionCriticality &
- Initial operation
 1985~1995

Outline

> History & HANARO, the neutron source

> Cold Neutron Research Facility Project

> Korean Neutron Users

Project Structure

CNRF outline

Cold neutron guide

> Cold neutron instruments

> Technical development

Cold neutron guide

Cold neutron instruments

> Technical development

Neutron guides

Design & Fabrication

Plug & PS

기존 SANS 08.4.8

SANS 제거 2008. 8. 7

<u> 주개폐기</u> 설치 08.9.30

기존 플러그 제거 08. 8. 28

조립식 <u>차폐체</u> 설치 08.10.5

Installation & alignment

2009.4

2009.6

2009.7

2009. 9

2009.10

2009. 9

HANARO & Thermal Sources

Cold neutron instruments

> Technical development

Project Structure - NI

Instruments - before relocation

Instruments – new

Layout of the Cold Instruments

2010.04.13.

1

Current status as of 2011

- 40M-SANS
- 18M-SANS
- KIST-USANS
- REF-V
- Bio-REF
- Cold-TAS
- DC-TOF
- G-TS

fully Operational fully Operational Commissioning, final Commissioning, final Commissioning, final Commissioning, initial under Construction fully Operational

HANARO SANS Q-range

40M/18M-SANS/KIST-USANS

With the thickness of Nafion Membrane NIST, Macromolecules (2006), 39, 4775

40M-SANS

Main Instrument Parameters

Parameter	Value	
Total Instrument Length (m)	40	
Detector Dimensions (cm ²)	100 x 100	
Detector Resolution (cm ²)	0.5 x 0.5	
Detector supplier	ODELRA, 21000N	
Velocity selector supplier	ASTRIUM	
Max. Selector Transmission (%)	10%	
Wavelength range (Å)	4 - 20	
Wavelength spread (FWHM, %)	10 – 20 (or wider)	
Removable guide cross section (cm x cm)	5 x 5	
Guide coating	Ni	
Source to sample distance (m)	2 - 20 (steps : 2m)	
Sample to detector distance (m)	1 – 20 continuously (Actually 1.1 – 19.8)	
Max. detector offset (cm)	50	
Sample diameter (mm)	5 – 25	
Q-range (Å ⁻¹) (with lenses)	0.001 - 1.0 (>0.0007)	
Neutron polarizer	YES(to be installed)	
Refractive Focusing Optics	YES(to be installed)	

Calibration

- Standard sample, AgBe
- NVS rpm speed
- NVS tilting
- Spatial resolution by Pin-hole measurements
- Deadtime measurements
- Comparison with old data using same sample and other instruments

Neutron Flux at Sample Position

Wavelength of 5Å Collimation length of1.7 m

Wavelength of 6Å SDD = 19.85m, 5m, 1.16m Q range = 0.0017 - 0.7 Å⁻¹

Comparison of SANS Data

Old & New HANARO SANS Instruments

HANARO & NIST NG-7 SANS Instruments

- Both are absolutely calibrated with Silica Standard

- NIST data are absolutely calibrated with using direct beam method

MgF2 Focusing Lenses

18M-SANS

8M-SANS at Rx Hall(2001)

18M-SANS at guide hall (2011)

- Location : CG4B guide
- Total length : 18M
- Monochromator : mechanical velocity selector (DORNIER)
 - . Transmission : ~ 90%, FWHM: ~ 12 %(normal)
- Wavelength : 4 11 Å
- Collimation : Ni -coated mirror
 - . Length: 9m (three steps), beam size : 5cm x 5cm
- Measureable Q_range : 0.002 0.7 Å⁻¹
 - . size : 1 ~ 100nm
- SDD: 1.3 ~ 9 m (variable)
- Detector : 2D-PSD (ORDELA 2600N)
 - . Active area : 64 cm x 64 cm, resolution : 0.5 cm x 0.5 cm
- Neutron polarizer)/lens system

Sample environments

- Electromagnet
 - Gap : 0.165-18.42 cm
 - Field : max 1.5T
- Type : Horizontal

- Circulation Bath
- Bath volume : 30L
- Tem. Range : -10°C ~ 90°C
- Control $\,:\, PID$ control with Pt-100 $\!\Omega$
- Cooling capacity : 550kcal/Hr
- Heating block
- Tem. Range : RT ~ 250°C
- Control $\,:\, PID$ control with Pt-100 $\!\Omega$

Setting Temperature

- Pressure/temperature - Pressure : 30,000PSI
- (measured < 20,000 PSI)
- Tem. Range : RT ~ 250 C
- Window : Sappire

- Furnace
 - Tem. : RT ~ 600 C
 - Window : Sappire
 - Heater : Halogen

KIST-USANS

KIST-USANS

concrete pillar

Beam Ports for 4 A and 2 A

Monochromator and multiple Analyzers

Neutron techniques & sample environments on steel research

In-situ measurements

High temperature furnace (~1,600℃)

Loading device under high temperature (20KN + 800C)

Residual Stress

Residual Stress Instrument

Loading device for Four Circle Diffractometer

Measureable sample depth 1) Steel: 55 mm 2) Stainless steel: 50 mm 3) Aluminum: 100 mm

Texture & simulation

Texture measurement and simulation

Measurement of Boron distribution by Particle Tracking Autoradiography(PTA)

Chracterization of nano-sized precipitates by SANS

SANS spectra in steel samples

REF-V

REF-V current status

Compleation of Instrument Relocation & Performance Test

Main Application Field

• Solid Thin Film

Polymer Films, Dielectric Thin Film, Multilayer Mirror, Metal Thin Film, Hard Carbon Film,

Surface Magnetism

Ferromagnetic Film, Magnetic Multilayer, Spin Valve Structure

Sample Environment Facility

High Temp Chamber : ~650 K Magnetic Field : 0.3 T, EM Low Temp. CCR : > 10 K(plan) Other : Cryo-Furnace (plan) Instrument Characteristic & Performance

Item	Characteristics
Monochromator	Vertical focused PG(002)
Wavelength	4.75 Å, $2\Theta_M = 90^{\circ}$
Resolution	$\Delta\lambda/\lambda < 1.0\%$
Filter system	LN ₂ Cooled Be
Flux(sample)	~6.0 x 10 ⁵ n/cm ² /sec
Single detector	He3.6 atm.
1-D PSD (plan)	8x12cm², efficiency 90% at 4Å
Polarizer, Analyzer	Fe/Si SM(m=3)
Spin flipper	Mezei type, FR > 95%
Polarization	P = > 95%
Q Region	$0.003 \sim 0.3 \text{ Å}^{-1}$
Min. reflectivity	10^{-7}

REF-V current status

The Performance Test of PNR Tool

PNR Measurement with CN REF-V

Instrument Polarization Ratio : P>95% Minimum Sample Size : >10x10mm² Maximum B Field : 0.3T ICP : GUI mode, Labview

Instrument Beam Geometry

PNR Measurement of (CoFeB/MgO)₁₀ & (CoFe/MgO)₁₀ Thin Film Under Analysing of Measurement PNR Pattern : Magnetic Structure of Thin Film

10 From Date Spin-up 🟠 🔾 🔘 🕂 🧉 🖉 🖩 Spin-down 10 load I(++) 10 NR load I(+-) load I(-+) R load I(--) 10 10 10 10 0.04 0.08 0.20 0.12 **1(++) N**(---) ■ 3(++) 10 Q(A)0.0 0.1 0.2 0.3 0.4 Q(A-1)

PNR Pattern of Ni Thin Film

PNR Simulation of CoFeB Thin Film

PNR Pattern Reduction

CoFe/MgO Thin Film : PNR Pattern Annealed State, B=400G, I(++), I(--)

Bio-REF

Bio-REF

Prof. K.W. Shin (Sogang Univ)

* Applications in Nanotechnology & Biotechnology

- Nano-structured polymer thin films
- Polymer/metal nanostructures
- Nano-porous materials characterization
- Thin Films at high pressure
- •Bio mimetic materials

Bio-membranes

Magnetic multilayer

Enzyme, proteins

Polymer Brush

• Bio mimetic materials

• Langmuir monolayer characterization.

• Wetting transition on water surface

• Protein (DNA) adsorption in solution.

• Poly-electrolytes at the air/water interface

Adhesion Wetting/de-wetting

SPECIFICATIONS

ALC N	Monochromator-to- sample distance	2 m
* 5	Sample-to-detector distance	2 m
200	Sample Area	500 mm ²
4	# of monochromators	1 Set (4 ea)
	Filter	Beryllium(Cooled)
	Q _z range (Liquid) (Solid)	0.002 - 0.6 Å ⁻¹ 0.002 - 0.25 Å ⁻¹
	Wavelength	4.75 Å
	Measurements	Solid/Liquid Air/Liquid Air/Solid
	Minimum reflectivity	1 X 10 ⁻⁸
	Flux	8.0 X 10 ⁶ n/cm ² /sec
	Detector (Liquid) (Solid)	2D PSD Point type
	Sample environments	Temp, Press Cell Liquid Cell, LB
,	Strategies	Under construction

Bio-REF Current Status

Compleation of Instrument Installation

Inner Side of Bio-REF

Bio-REF at CNLB site

Sample Environments

Temp. Chamber

Neutron Cell

LB-Trough

Monochromator

D-PS reflectivity Pattern

🥘 Instrument Characteristic & Performance

Item	Characteristics
Monochromator	Pyrolytic graphite (002);
Wavelength Resolution Filter system	4.75 Å $\Delta\lambda/\lambda < 2.0\%$ LN ₂ Cooled Be
Single detector Count rate	³ He-detector < 3MHz
SDD(Sample-to- detector distance)	2 m
Q-range	0.005 to 0.23 Å ⁻¹ (Liquid surface) 0.005 to 0.6 Å ⁻¹ (Solid surface)

Cold-TAS

48-188

Cold-TAS

Cold-TAS

Guide, CG5	Super-mirror m = 2, In-pile Straight Section, ~ 5 m Curved Guide, ~ 26 m w/ R = 1500 m Straight Guide before the Instrument, ~ 16 m	
Filters	Neutron Velocity Selector before Monochromator Be, BeO before Analyzer (Future, if needed.)	
Monochromators	Vertically Focusing Monochromators PG(002) and Heusler(111) Doubly Focusing Monochromators (Future, if needed.)	
Monochromator-Sample Distance	Up to 2 m	
Collimation C1	Soller Collimators, 20', 40', 80'	
Beam Height at the Sample Table	Up to 1.5 m	
Sample-Analyzer Distance	Up to 1.0 m	
Collimation C2	Soller Collimators, 20', 40', 80' & Radial Collimator	
Analyzers	Horizontally Focusing Analyzers w/ Fixed Vertical Focusing PG(002) and Heusler(111)	
Analyzer-Detector Distance	Up to 0.5 m	
Detectors	5 cm Tube Detector 25 cm wide Position Sensitive Detector	

Cold-TAS: flux

	Simulated Flux	Center of Mass	Measured Thermal Flux	Converted Flux
After the Primary Shutter	5.57×10 ⁹	3.82		
Front of the 2 nd Shutter	2.84×10 ⁹	4.89	8.16×10 ⁹	3.00×10 ⁹
Front of the Higher-Order-Filter	2.58×10 ⁹	4.83	5.37×10 ⁹	2.00×10^{9}
Front of the Monochromator Chamber	2.30×10 ⁹	4.70	3.58×10 ⁹	1.37 ×10 ⁹

DC-TOF

DC-TOF

Park J-G

Nam UW

Kim HJ, Kim HO

Moon MK Choi YH

So JY

Korea Astronomy and Space Science Institute

- Vacuum in sample chamber & detector chamber → He-gas for detector chamber
- Detector panel in the chamber
 - 352 detectors in 11 panels
 - Detector electronics in the chamber
 - \rightarrow panel outside of chmaber
- 6 combined choppers
- Elliptic focusing guide
 → in-house fabrication
- Shielding structure of HC, Pb, PE+B-rubber around choppers, and detector chamber
 - \rightarrow intensive enforcement

Instrument Characteristics

Cold Neutron Source	Neutron Flux (MCNP calc.) [neutrons/cm ² /sec]	7.7x10 ¹² (26.3 K) + 6.4x10 ¹³ (125.14 K)	
	Super-mirror guide	M = 2.0	
Upcomming Guide	Curved Guide	R = 2500 m, Length = 24.4 m	
	Total Length	74.7 m	
	Elliptical shape	Total Length = 1250.0 cm	
Focusing Guide		$3.0 \text{ cm}(\text{W}) \times 14.5 \text{ cm}(\text{H}) \rightarrow 2.2 \text{ cm}(\text{W}) \times 6.1 \text{ cm}(\text{H})$	
	High M super-mirror guide	Mmax ~ 2.3	
	Number of Chopper	6 [2 counter rotating pairs, 2 single]	
Disk Chopper	Disk Diameter	68.0 cm ~ 60.0 cm	
System	Rotation Speed	I,000 - 20,000 rpm	
	Chopper Distance	12 m	
	Angular coverage	$-90^{\circ} < 2q < 140^{\circ}, -22^{\circ} < 2\Phi < 22^{\circ},$	
Secondary Spectrometer	Position Sensitive Detector	Height=2 m, diameter=25 mm	
	Sample-Detector Distance	2.5 m	
	Neutron Flux @ 5 A (10% Resolution)	4x10 ⁴ neutrons/sec/cm ²	
Instrument Characteristics	Minimum Resolution	2% of Neutron Incident Energy	
	Detector Coverage	Maximum 352 PSDs, 2.8 sr.	

DC-TOF - Performance Comparison

Instrument	Neutron Flux On Sample @ 10% Resolution	Detector- sample distance (m)	Total area [m ² or sr]	Flux × Detecting Area
DC-TOF (HANARO)	4.0×10 ⁴	2.5 m	10.47 m ² (1.7 sr)	1.7
DCS (NIST)	1.0×10 ⁴	4.0 m	~0.65 sr	0.33
NEAT (HMI)	1.0×10 ⁴	2.5 m	~1.0 sr	0.5
IN5 (ILL)	6.8×10 ⁵	4.0 m	1.7 sr	5.4 11.56

Development activities, ~ 2009

2009.08 Detector Tank Install.

2009.11 Guide Install.

DC-TOF – detector chamber

- He gas injection and leak rate
 - 93.5 % He gas in the volume
 - ->4 weeks pressure maintained

Development activities in 2010

2010.02 Chopper Shielding Install.

2010.04 Guide Shielding

2010.04 Detector Tank Shielding.

Incident neutron beam flux

- Spectrum is measured by TOF experiment.
- Measured @ first chopper site
- Normalized by total simulation flux.

Development activities in 2011

2011.04 Background Measurement test

2011.07 Chopper Install.

Software Development

Protocol Command Interface

- PSD more	PID 10 T PID 11	in housing accorded	Tota	Ard 9
G dynamic	Durfor Size D	<u> </u>	G To	जन्म भारती
C provides	n pullet orte k	on E HA Anne I	C R	nt test pulse turn on
File Name In	vtest root	STO	P Event Scale	100 -
. the reason limit	10.1001	1310		
amming 02 • SID 01 •				
Count ADCL	ADC R ADC L+R	ADC a*L/(L+b*R)+c	XY plot Ever	nt Rate
ADC Left PI	D=2, SID=1	12.11	- 14 C	ADCL0201 Entries 17
E		Π	122	Mean 24 RMS 2.7
250		1		
E		1		
-	DC dia	tributio	on of a	PSD
200	ADC dis			
200 A	ADC dis	15		
200 4 150 4	ADC dis			
200 150 100	ADC dis			
200 1 A				
200 1 150 1 100 1 50 1	ADC dis			
200	ADC dis		11	

Tabbed viewers for graph(histogram)

Old Data Acquisition Software •Developed by KNU group. •Developed in Python. •Based on ROOT(by CERN)

- New Data Acquisition Software
- •Upgraded from Old one
- •Developed by KAERI
- •No ROOT Dependency.

K-J Collaboration for Analysis SW

- Since 2007, Korea DC-TOF team and J-PARC MLF group have developed data reduction software.
- Based on Manyo-Lib developed in KEK/J-PARC & developed in Python programming language, Now used in J-PARC instruments and HANARO DC-TOF

Current Status

Component	Status	Description
Focusing Guide	completed	In-house developed, & future upgrade with with higher m
Disk Chopper (EADS Astrium)	being repaired	Fast counter rotating double choppers and all controllers are now being repaired.
Chopper Shielding	completed	Heavy concrete for neutron & gamma radiation
Guide Shielding	completed	Pb shielding , B-rubber & heavy concrete
Detector Tank	completed	He-filling type.
Detector (Toshiba)	57 PSD	Full capacity : 352 PSDs
Detector Electronics	for 64 PSD	
Tank Shielding	completed	Cd sheet inside of tank & B-rubber and PE out of tank
He control system for tank	completed	He pressure and flow control.
Monitor, Slit, Shutter	completed	
Sample Environment	-	Not yet available.
DAQ Software	completed	Developed by collaboration with KNU, upgraded by KAERI
Control Software	95%	Each part of components control is now working and ICP(Integrated Instrument Control Program) is under test.

HANARO & Thermal Sources

Cold Neutron Project

> Technical development

1st operation of the CNS

The HANARO reactor started with operation of the cold neutron source on **September 3rd 2009**, and the reactor reached the full power of **30 MW with a steady operation of the cold neutron source at 11:30 PM**.

The Time-of Flight measurements of neutron flux was performed at CG2A guide position in the guide hall and **the cold neutron was successfully measured at 01:30 AM September 4th 2009**.

Measured Flux at Guide Hall

Position		Thermal flux	Real flux	Real flux(max)
CG1	4.48*	2.01E+09	8.08E+08	1.37E+09
CG2A	4.54 *	5.82E+09	2.31E+09	2.94E+09
CG3	3.87 *	6.74E+09	3.14E+09	3.56E+09
CG4B	4.83 *	7.71E+09	2.87E+09	2.92E+09
CG5	4.21 *	8.16E+09	3.49E+09	4.02E+09
BIO-REF	4.90 ¹	2.79E+09	1.02E+09	1.17E+09
DC-TOF	4.16*	2.58E+09	1.12E+09	1.47E+09
GTS	4.57*	1.83E+09	7.21E+08	8.93E+08
REF-V	4.57*	1.49E+09	5.87E+08	7.81E+08
HR-SANS	4.90 ¹	3.57E+09	1.31E+09	1.43E+09
Cold-TAS(#1)	4.03+	5.37E+09	2.40E+09	3.00E+09
Cold-TAS(#2)	4.03+	3.58E+09	1.60E+09	2.10E+09
18M-SANS	4.90 ¹	4.96E+08	1.82E+08	1.82E+08
40M-SANS	4.97 ²	7.76E+07	2.81E+07	2.94E+07

BIO-REF DC-TOF GTS **REF-V** 3.600E8 .540E8 7.538E8 6.610E8 6.475E8 5.680E8 5.413E8 4.750E8 4.350E8 3.820E8 3.288E8 2.890E8 2.225E8 1.960E8 1.163E8 1.030E8 1.000E7 1.000E7 COLD-TAS#1 COLD-HR-18M-40M-SANS SANS SANS TAS#2 ſ 1.52873 7-52874 C-52874

CG1

CG2A

CG3

CG4B

3.5E9

3.0E9

2.5E9 2.0E9 1.5E9 1.0E9

Detector Electronics

Ni & Ni/Ti super-mirrors

Large sputtering chamber for mirror coating of 1.2m length

Neutron guide tubes fabricated

Distance	Entrance/mm	Exit /mm
A – B	100.004	99.993
B - C	60.002	60.007
B – D	60.001	59.999
C – D	100.006	100.002

Measurement **result** for a guide with a cross section 100x60mm

HANARO & Thermal Sources

Cold Neutron Research Project

Korean Neutron Users & International network

Current Stage of NS at HANARO

1996	2000	2010	2015
8 Operating	3 Improving	7 Developing	2 new projects
HRPD	18M-SANS	40M-SANS	CNAS
HIPD	RSI	Cold-TAS	CNIF
FCD	FCD	DC-TOF	
REF-V		Bio-REF	
REF-H		KIST-USANS	Planning
NR, ENF		Th-TAS	Thermal
PGAA		Bio-D	Guide & Instruments

Korean Neutron Beam Users' Association

World of Neutron Scattering

- **Pulsed Source:** ISIS, SNS, J-PARC
- Continuous Source: HANARO, JRR-3M, OPAL, NCNR, ILL, FRM-II,...

CKor JPARC

Center for Korean J-PARC Users (CKorJPARC)

2010

Users Program

- Support 200 users
- New Users in industry & biology

Strategy

- Detector-Electron
- Neutrino/Hadron
 Physics
- Spallation Neutron Source & Radiation Safety

Center for Korean J-PARC Users

Anticipated Effects

- Upgrade of Korean science
- strategy Korea-Japan collaboration
- Science diplomacy

Korea-Japan Cooperation

 Research Network
 Upgrade current KJ collaboration through J-PARC
 Mid, long-term collaboration topics

Conclusions

- CNRF project successfully finished
- Neutron spectrometers
 - 40M-SANS, 18M-SANS, G-TS fully Operational
 - KIST-USANS, REF-V, Bio-REF Commissioning, final
 - Cold-TAS Commissioning, initial
 - DC-TOF under Construction
- KNBUA, AOCNS, K-J NSM, CKorJPARC, ...
 - User office, secretarial service, technical supports,...
- Facility operations, In-house R&D & Technical developments, Strategic planning for next decade

- CNRF project leaders; Young-Ki Kim, Kye-Hong Lee, Young-Gap Cho, Sang-Ik Wu, Chang-Hee Lee / Young-Jin Kim, Hark-Rho Kim
- 18M-SANS; Baek-Seok Seong, Eun-Joo Shin
- REF-V; Jeong-Soo Lee, Ki-Yeon Kim
- Bio-REF; Kwan-Woo Shin, Dong Jin Choi, Ja-Sung Koo
- 40M-SANS; Sung-Min Choi, Young Soo Han, Tae-Hwan Kim
- Cold-TAS; Sungil Park
- DC-TOF; Je-Geun Park, Ji-Yong So, Myungkook Moon, Young-Hyun Choi, Uk-Won Nam, Hong-Ju Kim, Hyun-Ok Kim
- Guides & Shielding; Sang-Jin Cho
- Detector & Electronics; Myungkook Moon, Uk-Won Nam

Thank you for your attention!